22 research outputs found

    Influence of focus of attention, reinvestment and fall history on elderly gait stability

    Get PDF
    Falls represent a substantial risk in the elderly. Previous studies have found that a focus on the outcome or effect of the movement (external focus of attention) leads to improved balance performance, whereas a focus on the movement execution itself (internal focus of attention) impairs balance performance in elderly. A shift toward more conscious, explicit forms of motor control occurs when existing declarative knowledge is recruited in motor control, a phenomenon called reinvestment. We investigated the effects of attentional focus and reinvestment on gait stability in elderly fallers and nonfallers. Full body kinematics was collected from twenty-eight healthy older adults walking on a treadmill, while focus of attention was manipulated through instruction. Participants also filled out the Movement Specific Reinvestment Scale (MSRS) and the Falls Efficacy Scale International (FES-I), and provided details about their fall history. Coefficients of Variation (CV) of spatiotemporal gait parameters and Local Divergence Exponents (LDE) were calculated as measures of gait variability and gait stability, respectively. Larger stance time CV and LDE (decreased gait stability) were found for fallers compared to nonfallers. No significant effect of attentional focus was found for the gait parameters, and no significant relation between MSRS score (reinvestment) and fall history was found. We conclude that external attention to the walking surface does not lead to improved gait stability in elderly. Potential benefits of an external focus of attention might not apply to gait, because walking movements are not geared toward achieving a distinct environmental effect

    Effects of attentional focus on walking stability in elderly.

    Get PDF
    Balance performance in the elderly is related to psychological factors such as attentional focus. We investigated the effects of internal vs. external focus of attention and fall history on walking stability in healthy older adults.Walking stability of twenty-eight healthy older adults was assessed by applying random unilateral decelerations on a split-belt treadmill and analysing the resulting balance recovery movements. The internal focus instruction was: concentrate on the movement of your legs, whereas the external focus instruction was: concentrate on the movement of the treadmill. In both conditions participants were asked to look ahead at a screen. Outcome measures were coefficient of variation of step length and step width, and characteristics of the centre of mass velocity time-series as analysed using statistical parametric mapping. Fall history was assessed using a questionnaire.After each perturbation participants required two to three strides to regain a normal gait pattern, as determined by the centre of mass velocity response. No effects were found of internal and external focus of attention instructions and fall history on any of the outcome measures.We conclude that, compared to an internal focus of attention instruction, external focus to the walking surface does not lead to improved balance recovery responses to gait perturbations in the elderly

    Tradeoff between Stability and Maneuverability during Whole-Body Movements

    Get PDF
    Understanding how stability and/or maneuverability affects motor control strategies can provide insight on moving about safely in an unpredictable world. Stability in human movement has been well-studied while maneuverability has not. Further, a tradeoff between stability and maneuverability during movement seems apparent, yet has not been quantified. We proposed that greater maneuverability, the ability to rapidly and purposefully change movement direction and speed, is beneficial in uncertain environments. We also hypothesized that gaining maneuverability comes at the expense of stability and perhaps also corresponds with decreased muscle coactivation.We used a goal-directed forward lean movement task that integrated both stability and maneuverability. Subjects (n = 11) used their center of pressure to control a cursor on a computer monitor to reach a target. We added task uncertainty by shifting the target anterior-posterior position mid-movement. We used a balance board with a narrow beam that reduced the base of support in the medio-lateral direction and defined stability as the probability that subjects could keep the balance board level during the task.During the uncertainty condition, subjects were able to change direction of their anterior-posterior center of pressure more rapidly, indicating that subjects were more maneuverable. Furthermore, medio-lateral center of pressure excursions also approached the edges of the beam and reduced stability margins, implying that subjects were less stable (i.e. less able to keep the board level). On the narrow beam board, subjects increased muscle coactivation of lateral muscle pairs and had greater muscle activity in the left leg. However, there were no statistically significant differences in muscle activity amplitudes or coactivation with uncertainty.These results demonstrate that there is a tradeoff between stability and maneuverability during a goal-directed whole-body movement. Tasks with added uncertainty could help individuals learn to be more maneuverable yet sufficiently stable

    Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p

    Postural orientation: Age-related changes in variability and time-to-boundary

    No full text
    The relation between age-specific postural instability and the detection of stability boundaries was examined. Balance control was investigated under different visual conditions (eyes open/closed) and postural orientations·(forward/backward lean) while standing on a force platform. Dependent variables included center of pressure variability and the time-to-contact of the center of pressure with the stability boundaries around the feet (i.e., time-to-boundary). While leaning maximally, older individuals (ages 55-69) showed increased center of pressure variability compared to no lean, while younger subjects (ages 24-38) showed a decrease. These significant differences were found only in anterior-posterior direction. No significant age-specific differences were found between eyes open and eyes closed conditions. Time-to-boundary analysis revealed reduced spatio-temporal stability margins in older individuals in both anterior-posterior and medio-lateral directions. Time-to-boundary variability, however, was not significantly different between the groups in both medio-lateral and anterior-posterior direction. These results show the importance of boundary relevant center of pressure measures in the study of postural control, especially concerning the lateral instability often observed in older adults

    Presence of Finger Extension and Shoulder Abduction Within 72 Hours After Stroke Predicts Functional Recovery Early Prediction of Functional Outcome After Stroke: The EPOS Cohort Study

    No full text
    Background and Purpose-The aim of the present study was to determine if outcome in terms of upper limb function at 6 months after stroke can be predicted in hospital stroke units using clinical parameters measured within 72 hours after stroke. In addition, the effect of the timing of assessment after stroke on the accuracy of prediction was investigated by measurements on days 5 and 9. Methods-Candidate determinants were measured in 188 stroke patients within 72 hours and at 5 and 9 days after stroke. Logistic regression analysis was used for model development to predict upper limb function at 6 months measured with the action research arm test (ARAT). Results-Patients with an upper limb motor deficit who exhibit some voluntary extension of the fingers and some abduction of the hemiplegic shoulder on day 2 have a probability of 0.98 to regain some dexterity at 6 months, whereas the probability was 0.25 for those without this voluntary motor activity. Sixty percent of patients with some early finger extension achieved full recovery at 6 months in terms of action research arm test score. Retesting the model on days 5 and 9 resulted in a gradual decline in probability from 0.25 to 0.14 for those without voluntary motor activity of shoulder abduction and finger extension, whereas the probability remained 0.98 for those with this motor activity. Conclusions-Based on 2 simple bedside tests, finger extension and shoulder abduction, functional recovery of the hemiplegic arm at 6 months can be predicted early in a hospital stroke unit within 72 hours after stroke onset. (Stroke. 2010; 41: 745-750.

    Stability boundaries and lateral postural control in Parkinson\u27s disease

    No full text
    Postural instability is a major problem in patients with Parkinson's disease (PD). We examined balance control in PD by using center of pressure (CP) variability and time-to-contact to investigate boundary relevant postural control behavior under quiet stance leaning conditions. Postural orientation was manipulated by having patients (n = 10) and healthy older controls (n = 7) lean forward and backward with varying degrees of lean on a force platform. The subjects were instructed to lean forward or backward (either halfway or as far as possible) without bending their hips or lifting their heels or toes off the ground. Time-to-contact of the CP with the geometric stability boundary defined by the feet as well as CP position and variability were analyzed. Medio-lateral CP variability was increased in the patients with PD. Medio-lateral average time-to-contact was decreased in the patients but not so in the anterior-posterior direction. In contrast to the CP variability, the medio-lateral variability of time-to-contact was lower in the patients. Patients as well as healthy older controls responded to lean manipulations with an increase in CP variability. Boundary relevant CP measures thus show clear changes in control strategies and confirm the role of lateral instability in PD
    corecore